MakeItFrom.com
Menu (ESC)

EN 1.0456 Steel vs. EN 1.0454 Cast Steel

Both EN 1.0456 steel and EN 1.0454 cast steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0456 steel and the bottom bar is EN 1.0454 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24 to 26
25
Fatigue Strength, MPa 210 to 220
220
Impact Strength: V-Notched Charpy, J 38 to 45
33
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 420 to 450
550
Tensile Strength: Yield (Proof), MPa 290 to 300
300

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 48
53
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
1.7
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.5
1.4
Embodied Energy, MJ/kg 20
18
Embodied Water, L/kg 49
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93 to 99
110
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 230
240
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 15 to 16
19
Strength to Weight: Bending, points 16 to 17
19
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 13 to 14
17

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 96.7 to 99.48
99.935 to 100
Manganese (Mn), % 0.5 to 1.4
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.3
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0