MakeItFrom.com
Menu (ESC)

EN 1.0456 Steel vs. EN 1.4606 Stainless Steel

Both EN 1.0456 steel and EN 1.4606 stainless steel are iron alloys. They have 56% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0456 steel and the bottom bar is EN 1.4606 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24 to 26
23 to 39
Fatigue Strength, MPa 210 to 220
240 to 420
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
75
Shear Strength, MPa 270 to 280
410 to 640
Tensile Strength: Ultimate (UTS), MPa 420 to 450
600 to 1020
Tensile Strength: Yield (Proof), MPa 290 to 300
280 to 630

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
910
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 48
14
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
26
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.5
6.0
Embodied Energy, MJ/kg 20
87
Embodied Water, L/kg 49
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93 to 99
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 230
200 to 1010
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 15 to 16
21 to 36
Strength to Weight: Bending, points 16 to 17
20 to 28
Thermal Diffusivity, mm2/s 13
3.7
Thermal Shock Resistance, points 13 to 14
21 to 35

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0 to 0.2
0 to 0.080
Chromium (Cr), % 0 to 0.3
13 to 16
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 96.7 to 99.48
49.2 to 59
Manganese (Mn), % 0.5 to 1.4
1.0 to 2.0
Molybdenum (Mo), % 0 to 0.1
1.0 to 1.5
Nickel (Ni), % 0 to 0.3
24 to 27
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0 to 0.030
1.9 to 2.3
Vanadium (V), % 0 to 0.050
0.1 to 0.5