MakeItFrom.com
Menu (ESC)

EN 1.0456 Steel vs. EN 1.4887 Stainless Steel

Both EN 1.0456 steel and EN 1.4887 stainless steel are iron alloys. They have 41% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0456 steel and the bottom bar is EN 1.4887 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 130
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 24 to 26
45
Fatigue Strength, MPa 210 to 220
280
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 270 to 280
400
Tensile Strength: Ultimate (UTS), MPa 420 to 450
580
Tensile Strength: Yield (Proof), MPa 290 to 300
300

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1390
Melting Onset (Solidus), °C 1420
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 48
12
Thermal Expansion, µm/m-K 12
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
39
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.5
6.7
Embodied Energy, MJ/kg 20
96
Embodied Water, L/kg 49
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93 to 99
220
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 230
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 15 to 16
20
Strength to Weight: Bending, points 16 to 17
19
Thermal Diffusivity, mm2/s 13
3.2
Thermal Shock Resistance, points 13 to 14
14

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.2
0 to 0.15
Chromium (Cr), % 0 to 0.3
20 to 23
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 96.7 to 99.48
34.2 to 45
Manganese (Mn), % 0.5 to 1.4
0 to 2.0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.3
33 to 37
Niobium (Nb), % 0 to 0.050
1.0 to 1.5
Nitrogen (N), % 0 to 0.015
0 to 0.1
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0 to 0.4
1.0 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0