MakeItFrom.com
Menu (ESC)

EN 1.0456 Steel vs. CC497K Bronze

EN 1.0456 steel belongs to the iron alloys classification, while CC497K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0456 steel and the bottom bar is CC497K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 130
55
Elastic (Young's, Tensile) Modulus, GPa 190
93
Elongation at Break, % 24 to 26
6.7
Poisson's Ratio 0.29
0.36
Shear Modulus, GPa 73
34
Tensile Strength: Ultimate (UTS), MPa 420 to 450
190
Tensile Strength: Yield (Proof), MPa 290 to 300
91

Thermal Properties

Latent Heat of Fusion, J/g 250
160
Maximum Temperature: Mechanical, °C 400
130
Melting Completion (Liquidus), °C 1460
870
Melting Onset (Solidus), °C 1420
800
Specific Heat Capacity, J/kg-K 470
330
Thermal Conductivity, W/m-K 48
53
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
29
Density, g/cm3 7.8
9.3
Embodied Carbon, kg CO2/kg material 1.5
3.0
Embodied Energy, MJ/kg 20
48
Embodied Water, L/kg 49
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93 to 99
10
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 230
45
Stiffness to Weight: Axial, points 13
5.5
Stiffness to Weight: Bending, points 24
16
Strength to Weight: Axial, points 15 to 16
5.6
Strength to Weight: Bending, points 16 to 17
7.8
Thermal Diffusivity, mm2/s 13
17
Thermal Shock Resistance, points 13 to 14
7.2

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0 to 0.010
Antimony (Sb), % 0
0 to 0.75
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.35
67.5 to 77.5
Iron (Fe), % 96.7 to 99.48
0 to 0.25
Lead (Pb), % 0
18 to 23
Manganese (Mn), % 0.5 to 1.4
0 to 0.2
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.3
0.5 to 2.5
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.035
0 to 0.1
Silicon (Si), % 0 to 0.4
0 to 0.010
Sulfur (S), % 0 to 0.030
0 to 0.1
Tin (Sn), % 0
4.0 to 6.0
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
0 to 2.0