MakeItFrom.com
Menu (ESC)

EN 1.0456 Steel vs. C75400 Nickel Silver

EN 1.0456 steel belongs to the iron alloys classification, while C75400 nickel silver belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.0456 steel and the bottom bar is C75400 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 24 to 26
2.0 to 43
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
46
Shear Strength, MPa 270 to 280
250 to 370
Tensile Strength: Ultimate (UTS), MPa 420 to 450
370 to 630
Tensile Strength: Yield (Proof), MPa 290 to 300
130 to 590

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 400
190
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 48
36
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
7.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
32
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.5
3.8
Embodied Energy, MJ/kg 20
59
Embodied Water, L/kg 49
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93 to 99
12 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 230
75 to 1450
Stiffness to Weight: Axial, points 13
7.9
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 15 to 16
12 to 21
Strength to Weight: Bending, points 16 to 17
13 to 19
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 13 to 14
12 to 21

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.35
63.5 to 66.5
Iron (Fe), % 96.7 to 99.48
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0.5 to 1.4
0 to 0.5
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.3
14 to 16
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
16.2 to 22.5
Residuals, % 0
0 to 0.5