MakeItFrom.com
Menu (ESC)

EN 1.0456 Steel vs. S30435 Stainless Steel

Both EN 1.0456 steel and S30435 stainless steel are iron alloys. They have 73% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0456 steel and the bottom bar is S30435 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 130
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24 to 26
51
Fatigue Strength, MPa 210 to 220
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 270 to 280
370
Tensile Strength: Ultimate (UTS), MPa 420 to 450
510
Tensile Strength: Yield (Proof), MPa 290 to 300
170

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
900
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 48
16
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
14
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
2.9
Embodied Energy, MJ/kg 20
40
Embodied Water, L/kg 49
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93 to 99
210
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 230
77
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 15 to 16
18
Strength to Weight: Bending, points 16 to 17
18
Thermal Diffusivity, mm2/s 13
4.2
Thermal Shock Resistance, points 13 to 14
12

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.2
0 to 0.080
Chromium (Cr), % 0 to 0.3
16 to 18
Copper (Cu), % 0 to 0.35
1.5 to 3.0
Iron (Fe), % 96.7 to 99.48
66.9 to 75.5
Manganese (Mn), % 0.5 to 1.4
0 to 2.0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.3
7.0 to 9.0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0