EN 1.0456 Steel vs. ZA-12
EN 1.0456 steel belongs to the iron alloys classification, while ZA-12 belongs to the zinc alloys. There are 31 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.
For each property being compared, the top bar is EN 1.0456 steel and the bottom bar is ZA-12.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 120 to 130 | |
89 to 100 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
83 |
Elongation at Break, % | 24 to 26 | |
1.6 to 5.3 |
Fatigue Strength, MPa | 210 to 220 | |
73 to 120 |
Poisson's Ratio | 0.29 | |
0.26 |
Shear Modulus, GPa | 73 | |
33 |
Shear Strength, MPa | 270 to 280 | |
240 to 300 |
Tensile Strength: Ultimate (UTS), MPa | 420 to 450 | |
260 to 400 |
Tensile Strength: Yield (Proof), MPa | 290 to 300 | |
210 to 320 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
120 |
Maximum Temperature: Mechanical, °C | 400 | |
100 |
Melting Completion (Liquidus), °C | 1460 | |
430 |
Melting Onset (Solidus), °C | 1420 | |
380 |
Specific Heat Capacity, J/kg-K | 470 | |
450 |
Thermal Conductivity, W/m-K | 48 | |
120 |
Thermal Expansion, µm/m-K | 12 | |
24 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.3 | |
28 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.4 | |
42 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.2 | |
11 |
Density, g/cm3 | 7.8 | |
6.0 |
Embodied Carbon, kg CO2/kg material | 1.5 | |
3.4 |
Embodied Energy, MJ/kg | 20 | |
64 |
Embodied Water, L/kg | 49 | |
440 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 93 to 99 | |
4.0 to 20 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 220 to 230 | |
260 to 620 |
Stiffness to Weight: Axial, points | 13 | |
7.6 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 15 to 16 | |
12 to 19 |
Strength to Weight: Bending, points | 16 to 17 | |
15 to 20 |
Thermal Diffusivity, mm2/s | 13 | |
43 |
Thermal Shock Resistance, points | 13 to 14 | |
9.4 to 14 |
Alloy Composition
Aluminum (Al), % | 0.020 to 0.060 | |
10.5 to 11.5 |
Cadmium (Cd), % | 0 | |
0 to 0.0060 |
Carbon (C), % | 0 to 0.2 | |
0 |
Chromium (Cr), % | 0 to 0.3 | |
0 |
Copper (Cu), % | 0 to 0.35 | |
0.5 to 1.2 |
Iron (Fe), % | 96.7 to 99.48 | |
0 to 0.075 |
Lead (Pb), % | 0 | |
0 to 0.0060 |
Magnesium (Mg), % | 0 | |
0.015 to 0.030 |
Manganese (Mn), % | 0.5 to 1.4 | |
0 |
Molybdenum (Mo), % | 0 to 0.1 | |
0 |
Nickel (Ni), % | 0 to 0.3 | |
0 to 0.020 |
Niobium (Nb), % | 0 to 0.050 | |
0 |
Nitrogen (N), % | 0 to 0.015 | |
0 |
Phosphorus (P), % | 0 to 0.035 | |
0 |
Silicon (Si), % | 0 to 0.4 | |
0 to 0.060 |
Sulfur (S), % | 0 to 0.030 | |
0 |
Tin (Sn), % | 0 | |
0 to 0.0030 |
Titanium (Ti), % | 0 to 0.030 | |
0 |
Vanadium (V), % | 0 to 0.050 | |
0 |
Zinc (Zn), % | 0 | |
87.1 to 89 |