MakeItFrom.com
Menu (ESC)

EN 1.0471 Steel vs. SAE-AISI 1330 Steel

Both EN 1.0471 steel and SAE-AISI 1330 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.0471 steel and the bottom bar is SAE-AISI 1330 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
150 to 210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
11 to 23
Fatigue Strength, MPa 270
210 to 380
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 360
330 to 430
Tensile Strength: Ultimate (UTS), MPa 580
520 to 710
Tensile Strength: Yield (Proof), MPa 380
290 to 610

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
51
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
1.9
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.4
Embodied Energy, MJ/kg 20
19
Embodied Water, L/kg 48
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
76 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 390
230 to 990
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
19 to 25
Strength to Weight: Bending, points 20
18 to 23
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 18
17 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.060
0
Carbon (C), % 0 to 0.22
0.28 to 0.33
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 97.4 to 98.8
97.3 to 98
Manganese (Mn), % 1.0 to 1.5
1.6 to 1.9
Niobium (Nb), % 0.015 to 0.1
0
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0.15 to 0.35
0.15 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.040