MakeItFrom.com
Menu (ESC)

EN 1.0471 Steel vs. S33228 Stainless Steel

Both EN 1.0471 steel and S33228 stainless steel are iron alloys. They have 40% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.0471 steel and the bottom bar is S33228 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
34
Fatigue Strength, MPa 270
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
79
Shear Strength, MPa 360
380
Tensile Strength: Ultimate (UTS), MPa 580
570
Tensile Strength: Yield (Proof), MPa 380
210

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1410
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 12
16

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
37
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.5
6.2
Embodied Energy, MJ/kg 20
89
Embodied Water, L/kg 48
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
150
Resilience: Unit (Modulus of Resilience), kJ/m3 390
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
20
Strength to Weight: Bending, points 20
19
Thermal Shock Resistance, points 18
13

Alloy Composition

Aluminum (Al), % 0 to 0.060
0 to 0.025
Carbon (C), % 0 to 0.22
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 97.4 to 98.8
36.5 to 42.3
Manganese (Mn), % 1.0 to 1.5
0 to 1.0
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0.015 to 0.1
0.6 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0.15 to 0.35
0 to 0.3
Sulfur (S), % 0 to 0.010
0 to 0.015