MakeItFrom.com
Menu (ESC)

EN 1.0487 Steel vs. EN 1.4422 Stainless Steel

Both EN 1.0487 steel and EN 1.4422 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0487 steel and the bottom bar is EN 1.4422 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 27
17
Fatigue Strength, MPa 210
380
Impact Strength: V-Notched Charpy, J 71
110
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 280
520
Tensile Strength: Ultimate (UTS), MPa 440
850
Tensile Strength: Yield (Proof), MPa 280
630

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
760
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
16
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
11
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.5
2.7
Embodied Energy, MJ/kg 20
37
Embodied Water, L/kg 49
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
130
Resilience: Unit (Modulus of Resilience), kJ/m3 200
1000
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 15
30
Strength to Weight: Bending, points 16
25
Thermal Diffusivity, mm2/s 13
4.3
Thermal Shock Resistance, points 14
31

Alloy Composition

Aluminum (Al), % 0.020 to 0.024
0
Carbon (C), % 0 to 0.16
0 to 0.020
Chromium (Cr), % 0 to 0.3
11 to 13
Copper (Cu), % 0 to 0.3
0.2 to 0.8
Iron (Fe), % 96.6 to 99.38
76.8 to 83.5
Manganese (Mn), % 0.6 to 1.5
0 to 2.0
Molybdenum (Mo), % 0 to 0.080
1.3 to 1.8
Nickel (Ni), % 0 to 0.5
4.0 to 5.0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.012
0 to 0.020
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.0030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0