MakeItFrom.com
Menu (ESC)

EN 1.0488 Steel vs. EN 1.4110 Stainless Steel

Both EN 1.0488 steel and EN 1.4110 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0488 steel and the bottom bar is EN 1.4110 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
11 to 14
Fatigue Strength, MPa 210
250 to 730
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 280
470 to 1030
Tensile Strength: Ultimate (UTS), MPa 440
770 to 1720
Tensile Strength: Yield (Proof), MPa 280
430 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
790
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
30
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
8.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.5
2.3
Embodied Energy, MJ/kg 20
33
Embodied Water, L/kg 49
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
90 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 200
480 to 4550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 15
28 to 62
Strength to Weight: Bending, points 16
24 to 41
Thermal Diffusivity, mm2/s 13
8.1
Thermal Shock Resistance, points 14
27 to 60

Alloy Composition

Aluminum (Al), % 0.020 to 0.024
0
Carbon (C), % 0 to 0.16
0.48 to 0.6
Chromium (Cr), % 0 to 0.3
13 to 15
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.6 to 99.38
81.4 to 86
Manganese (Mn), % 0.6 to 1.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.080
0.5 to 0.8
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.0080
0 to 0.015
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0 to 0.15