MakeItFrom.com
Menu (ESC)

EN 1.0501 Steel vs. EN 1.0225 Steel

Both EN 1.0501 steel and EN 1.0225 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.0501 steel and the bottom bar is EN 1.0225 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
130 to 140
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
6.7 to 24
Fatigue Strength, MPa 190
170 to 220
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 350
280 to 290
Tensile Strength: Ultimate (UTS), MPa 560
440 to 500
Tensile Strength: Yield (Proof), MPa 280
230 to 380

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 48
52
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 19
18
Embodied Water, L/kg 47
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 210
140 to 390
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
16 to 18
Strength to Weight: Bending, points 19
16 to 18
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 18
14 to 16

Alloy Composition

Carbon (C), % 0.32 to 0.39
0 to 0.21
Chromium (Cr), % 0 to 0.4
0
Iron (Fe), % 97.4 to 99.18
98 to 100
Manganese (Mn), % 0.5 to 0.8
0 to 1.4
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 0.35
Sulfur (S), % 0 to 0.045
0 to 0.045