MakeItFrom.com
Menu (ESC)

EN 1.0540 Steel vs. C93400 Bronze

EN 1.0540 steel belongs to the iron alloys classification, while C93400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0540 steel and the bottom bar is C93400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 14
9.1
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 72
38
Tensile Strength: Ultimate (UTS), MPa 660
270
Tensile Strength: Yield (Proof), MPa 330
150

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 400
150
Melting Completion (Liquidus), °C 1460
950
Melting Onset (Solidus), °C 1420
850
Specific Heat Capacity, J/kg-K 470
350
Thermal Conductivity, W/m-K 48
58
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
12
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
32
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
3.3
Embodied Energy, MJ/kg 19
54
Embodied Water, L/kg 47
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75
21
Resilience: Unit (Modulus of Resilience), kJ/m3 290
120
Stiffness to Weight: Axial, points 13
6.3
Stiffness to Weight: Bending, points 24
17
Strength to Weight: Axial, points 23
8.3
Strength to Weight: Bending, points 22
10
Thermal Diffusivity, mm2/s 13
18
Thermal Shock Resistance, points 21
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0.47 to 0.55
0
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0
82 to 85
Iron (Fe), % 97.2 to 98.9
0 to 0.2
Lead (Pb), % 0
7.0 to 9.0
Manganese (Mn), % 0.6 to 0.9
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0 to 1.0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 0.4
0 to 0.0050
Sulfur (S), % 0 to 0.045
0 to 0.080
Tin (Sn), % 0
7.0 to 9.0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0