EN 1.0558 Cast Steel vs. ASTM A228 Music Wire
Both EN 1.0558 cast steel and ASTM A228 music wire are iron alloys. They have a very high 99% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is EN 1.0558 cast steel and the bottom bar is ASTM A228 music wire.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 18 | |
12 |
Fatigue Strength, MPa | 230 | |
1280 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
72 |
Tensile Strength: Ultimate (UTS), MPa | 640 | |
2450 |
Tensile Strength: Yield (Proof), MPa | 340 | |
2050 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Maximum Temperature: Mechanical, °C | 400 | |
400 |
Melting Completion (Liquidus), °C | 1470 | |
1450 |
Melting Onset (Solidus), °C | 1430 | |
1410 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 53 | |
49 |
Thermal Expansion, µm/m-K | 12 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.8 | |
7.1 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.9 | |
8.2 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.7 | |
1.8 |
Density, g/cm3 | 7.9 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
1.4 |
Embodied Energy, MJ/kg | 18 | |
19 |
Embodied Water, L/kg | 45 | |
45 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 99 | |
280 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 22 | |
87 |
Strength to Weight: Bending, points | 21 | |
52 |
Thermal Diffusivity, mm2/s | 14 | |
13 |
Thermal Shock Resistance, points | 20 | |
79 |
Alloy Composition
Carbon (C), % | 0 | |
0.7 to 1.0 |
Iron (Fe), % | 99.935 to 100 | |
98 to 99 |
Manganese (Mn), % | 0 | |
0.2 to 0.6 |
Phosphorus (P), % | 0 to 0.035 | |
0 to 0.025 |
Silicon (Si), % | 0 | |
0.1 to 0.3 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.030 |