MakeItFrom.com
Menu (ESC)

EN 1.0558 Cast Steel vs. ASTM A387 Grade 21 Steel

Both EN 1.0558 cast steel and ASTM A387 grade 21 steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0558 cast steel and the bottom bar is ASTM A387 grade 21 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18
21
Fatigue Strength, MPa 230
160 to 250
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
74
Tensile Strength: Ultimate (UTS), MPa 640
500 to 590
Tensile Strength: Yield (Proof), MPa 340
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 400
480
Melting Completion (Liquidus), °C 1470
1470
Melting Onset (Solidus), °C 1430
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 53
41
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 1.7
4.1
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.8
Embodied Energy, MJ/kg 18
23
Embodied Water, L/kg 45
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
84 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 300
140 to 320
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
18 to 21
Strength to Weight: Bending, points 21
18 to 20
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 20
14 to 17

Alloy Composition

Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
2.8 to 3.3
Iron (Fe), % 99.935 to 100
94.4 to 96
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.025