MakeItFrom.com
Menu (ESC)

EN 1.0558 Cast Steel vs. EN AC-45500 Aluminum

EN 1.0558 cast steel belongs to the iron alloys classification, while EN AC-45500 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.0558 cast steel and the bottom bar is EN AC-45500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 18
2.8
Fatigue Strength, MPa 230
80
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Tensile Strength: Ultimate (UTS), MPa 640
320
Tensile Strength: Yield (Proof), MPa 340
250

Thermal Properties

Latent Heat of Fusion, J/g 250
500
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1470
610
Melting Onset (Solidus), °C 1430
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 53
150
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
33
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
110

Otherwise Unclassified Properties

Base Metal Price, % relative 1.7
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 1.4
8.0
Embodied Energy, MJ/kg 18
150
Embodied Water, L/kg 45
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
8.2
Resilience: Unit (Modulus of Resilience), kJ/m3 300
430
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 22
34
Strength to Weight: Bending, points 21
40
Thermal Diffusivity, mm2/s 14
65
Thermal Shock Resistance, points 20
15

Alloy Composition

Aluminum (Al), % 0
90.6 to 93.1
Copper (Cu), % 0
0.2 to 0.7
Iron (Fe), % 99.935 to 100
0 to 0.25
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0
6.5 to 7.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1