MakeItFrom.com
Menu (ESC)

EN 1.0565 Steel vs. EN 1.4507 Stainless Steel

Both EN 1.0565 steel and EN 1.4507 stainless steel are iron alloys. They have 63% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0565 steel and the bottom bar is EN 1.4507 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
230
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 24
25
Fatigue Strength, MPa 260
410
Impact Strength: V-Notched Charpy, J 71
90
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
80
Shear Strength, MPa 350
530
Tensile Strength: Ultimate (UTS), MPa 550
840
Tensile Strength: Yield (Proof), MPa 360
590

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
15
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
21
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
4.0
Embodied Energy, MJ/kg 22
55
Embodied Water, L/kg 49
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
190
Resilience: Unit (Modulus of Resilience), kJ/m3 340
850
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
30
Strength to Weight: Bending, points 19
25
Thermal Diffusivity, mm2/s 14
4.0
Thermal Shock Resistance, points 17
23

Alloy Composition

Aluminum (Al), % 0 to 0.060
0
Carbon (C), % 0 to 0.2
0 to 0.030
Chromium (Cr), % 0 to 0.3
24 to 26
Copper (Cu), % 0 to 0.3
1.0 to 2.5
Iron (Fe), % 96.2 to 99
56.4 to 65.8
Manganese (Mn), % 0.9 to 1.7
0 to 2.0
Molybdenum (Mo), % 0 to 0.080
3.0 to 4.0
Nickel (Ni), % 0 to 0.5
6.0 to 8.0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.020
0.2 to 0.3
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.7
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.1
0