MakeItFrom.com
Menu (ESC)

EN 1.0566 Steel vs. EN 1.4024 Stainless Steel

Both EN 1.0566 steel and EN 1.4024 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0566 steel and the bottom bar is EN 1.4024 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24
15 to 22
Fatigue Strength, MPa 270
220 to 300
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 350
370 to 460
Tensile Strength: Ultimate (UTS), MPa 550
590 to 750
Tensile Strength: Yield (Proof), MPa 370
330 to 510

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
760
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 50
30
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.6
1.9
Embodied Energy, MJ/kg 22
27
Embodied Water, L/kg 50
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
98 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 360
280 to 660
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
21 to 27
Strength to Weight: Bending, points 19
20 to 24
Thermal Diffusivity, mm2/s 14
8.1
Thermal Shock Resistance, points 17
21 to 26

Alloy Composition

Aluminum (Al), % 0.020 to 0.024
0
Carbon (C), % 0 to 0.18
0.12 to 0.17
Chromium (Cr), % 0 to 0.3
12 to 14
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.2 to 98.9
83.8 to 87.9
Manganese (Mn), % 1.1 to 1.7
0 to 1.0
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.0080
0 to 0.015
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.1
0