MakeItFrom.com
Menu (ESC)

EN 1.0566 Steel vs. EN 1.4640 Stainless Steel

Both EN 1.0566 steel and EN 1.4640 stainless steel are iron alloys. They have 73% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0566 steel and the bottom bar is EN 1.4640 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
190 to 200
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 24
51
Fatigue Strength, MPa 270
230 to 250
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 350
440 to 460
Tensile Strength: Ultimate (UTS), MPa 550
620 to 650
Tensile Strength: Yield (Proof), MPa 370
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
930
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 50
15
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
14
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
2.8
Embodied Energy, MJ/kg 22
40
Embodied Water, L/kg 50
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
250 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 360
150 to 170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
22 to 23
Strength to Weight: Bending, points 19
21
Thermal Diffusivity, mm2/s 14
4.0
Thermal Shock Resistance, points 17
14 to 15

Alloy Composition

Aluminum (Al), % 0.020 to 0.024
0
Carbon (C), % 0 to 0.18
0.030 to 0.080
Chromium (Cr), % 0 to 0.3
18 to 19
Copper (Cu), % 0 to 0.3
1.3 to 2.0
Iron (Fe), % 96.2 to 98.9
67.4 to 73.6
Manganese (Mn), % 1.1 to 1.7
1.5 to 4.0
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.5
5.5 to 6.9
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.012
0.030 to 0.11
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.0080
0 to 0.015
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.1
0