MakeItFrom.com
Menu (ESC)

EN 1.0580 Steel vs. B535.0 Aluminum

EN 1.0580 steel belongs to the iron alloys classification, while B535.0 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.0580 steel and the bottom bar is B535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 180
65
Elastic (Young's, Tensile) Modulus, GPa 190
66
Elongation at Break, % 5.6 to 25
10
Fatigue Strength, MPa 210 to 270
62
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
25
Shear Strength, MPa 340 to 360
210
Tensile Strength: Ultimate (UTS), MPa 540 to 620
260
Tensile Strength: Yield (Proof), MPa 290 to 450
130

Thermal Properties

Latent Heat of Fusion, J/g 250
390
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1420
550
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 51
96
Thermal Expansion, µm/m-K 12
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
24
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
82

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 1.4
9.4
Embodied Energy, MJ/kg 18
160
Embodied Water, L/kg 46
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 120
22
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 540
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 19 to 22
28
Strength to Weight: Bending, points 19 to 21
35
Thermal Diffusivity, mm2/s 14
40
Thermal Shock Resistance, points 17 to 20
11

Alloy Composition

Aluminum (Al), % 0
91.7 to 93.4
Carbon (C), % 0 to 0.22
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 97.5 to 100
0 to 0.15
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 0 to 1.6
0 to 0.050
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.55
0 to 0.15
Sulfur (S), % 0 to 0.045
0
Titanium (Ti), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.15