MakeItFrom.com
Menu (ESC)

EN 1.0580 Steel vs. EN 1.0565 Steel

Both EN 1.0580 steel and EN 1.0565 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.0580 steel and the bottom bar is EN 1.0565 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 180
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 5.6 to 25
24
Fatigue Strength, MPa 210 to 270
260
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 340 to 360
350
Tensile Strength: Ultimate (UTS), MPa 540 to 620
550
Tensile Strength: Yield (Proof), MPa 290 to 450
360

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
50
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.3
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.6
Embodied Energy, MJ/kg 18
22
Embodied Water, L/kg 46
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 540
340
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19 to 22
19
Strength to Weight: Bending, points 19 to 21
19
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 17 to 20
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.060
Carbon (C), % 0 to 0.22
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 97.5 to 100
96.2 to 99
Manganese (Mn), % 0 to 1.6
0.9 to 1.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 0.55
0 to 0.5
Sulfur (S), % 0 to 0.045
0 to 0.015
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.1