MakeItFrom.com
Menu (ESC)

EN 1.0580 Steel vs. EN 1.4659 Stainless Steel

Both EN 1.0580 steel and EN 1.4659 stainless steel are iron alloys. They have 42% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0580 steel and the bottom bar is EN 1.4659 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 180
260
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 5.6 to 25
49
Fatigue Strength, MPa 210 to 270
460
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
81
Shear Strength, MPa 340 to 360
640
Tensile Strength: Ultimate (UTS), MPa 540 to 620
900
Tensile Strength: Yield (Proof), MPa 290 to 450
480

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 51
12
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
37
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.4
6.5
Embodied Energy, MJ/kg 18
89
Embodied Water, L/kg 46
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 120
370
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 540
550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19 to 22
31
Strength to Weight: Bending, points 19 to 21
25
Thermal Diffusivity, mm2/s 14
3.2
Thermal Shock Resistance, points 17 to 20
19

Alloy Composition

Carbon (C), % 0 to 0.22
0 to 0.020
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 0
1.0 to 2.0
Iron (Fe), % 97.5 to 100
35.7 to 45.7
Manganese (Mn), % 0 to 1.6
2.0 to 4.0
Molybdenum (Mo), % 0
5.5 to 6.5
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.55
0 to 0.7
Sulfur (S), % 0 to 0.045
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5