MakeItFrom.com
Menu (ESC)

EN 1.0580 Steel vs. EN 1.4807 Stainless Steel

Both EN 1.0580 steel and EN 1.4807 stainless steel are iron alloys. They have 43% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0580 steel and the bottom bar is EN 1.4807 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 180
140
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 5.6 to 25
4.5
Fatigue Strength, MPa 210 to 270
120
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
75
Tensile Strength: Ultimate (UTS), MPa 540 to 620
480
Tensile Strength: Yield (Proof), MPa 290 to 450
250

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 400
1000
Melting Completion (Liquidus), °C 1460
1390
Melting Onset (Solidus), °C 1420
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
12
Thermal Expansion, µm/m-K 12
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
39
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.4
6.8
Embodied Energy, MJ/kg 18
97
Embodied Water, L/kg 46
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 120
18
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 540
160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19 to 22
17
Strength to Weight: Bending, points 19 to 21
17
Thermal Diffusivity, mm2/s 14
3.2
Thermal Shock Resistance, points 17 to 20
12

Alloy Composition

Carbon (C), % 0 to 0.22
0.3 to 0.5
Chromium (Cr), % 0
17 to 20
Iron (Fe), % 97.5 to 100
36.6 to 46.7
Manganese (Mn), % 0 to 1.6
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
34 to 36
Niobium (Nb), % 0
1.0 to 1.8
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.55
1.0 to 2.5
Sulfur (S), % 0 to 0.045
0 to 0.030