MakeItFrom.com
Menu (ESC)

EN 1.0580 Steel vs. N10629 Nickel

EN 1.0580 steel belongs to the iron alloys classification, while N10629 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.0580 steel and the bottom bar is N10629 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
220
Elongation at Break, % 5.6 to 25
45
Fatigue Strength, MPa 210 to 270
340
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
83
Shear Strength, MPa 340 to 360
600
Tensile Strength: Ultimate (UTS), MPa 540 to 620
860
Tensile Strength: Yield (Proof), MPa 290 to 450
400

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 400
910
Melting Completion (Liquidus), °C 1460
1610
Melting Onset (Solidus), °C 1420
1560
Specific Heat Capacity, J/kg-K 470
390
Thermal Expansion, µm/m-K 12
10

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
75
Density, g/cm3 7.8
9.2
Embodied Carbon, kg CO2/kg material 1.4
15
Embodied Energy, MJ/kg 18
190
Embodied Water, L/kg 46
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 120
320
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 540
360
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 19 to 22
26
Strength to Weight: Bending, points 19 to 21
22
Thermal Shock Resistance, points 17 to 20
27

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.5
Carbon (C), % 0 to 0.22
0 to 0.010
Chromium (Cr), % 0
0.5 to 1.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 97.5 to 100
1.0 to 6.0
Manganese (Mn), % 0 to 1.6
0 to 1.5
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0
65 to 72.4
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.55
0 to 0.050
Sulfur (S), % 0 to 0.045
0 to 0.010