MakeItFrom.com
Menu (ESC)

EN 1.0580 Steel vs. S42035 Stainless Steel

Both EN 1.0580 steel and S42035 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0580 steel and the bottom bar is S42035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 180
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 5.6 to 25
18
Fatigue Strength, MPa 210 to 270
260
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 340 to 360
390
Tensile Strength: Ultimate (UTS), MPa 540 to 620
630
Tensile Strength: Yield (Proof), MPa 290 to 450
430

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
810
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
27
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
2.4
Embodied Energy, MJ/kg 18
34
Embodied Water, L/kg 46
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 120
100
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 540
460
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19 to 22
22
Strength to Weight: Bending, points 19 to 21
21
Thermal Diffusivity, mm2/s 14
7.2
Thermal Shock Resistance, points 17 to 20
22

Alloy Composition

Carbon (C), % 0 to 0.22
0 to 0.080
Chromium (Cr), % 0
13.5 to 15.5
Iron (Fe), % 97.5 to 100
78.1 to 85
Manganese (Mn), % 0 to 1.6
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 1.2
Nickel (Ni), % 0
1.0 to 2.5
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.55
0 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.030
Titanium (Ti), % 0
0.3 to 0.5