MakeItFrom.com
Menu (ESC)

EN 1.0590 Steel vs. A413.0 Aluminum

EN 1.0590 steel belongs to the iron alloys classification, while A413.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.0590 steel and the bottom bar is A413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
80
Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 19
3.5
Fatigue Strength, MPa 290
130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Shear Strength, MPa 380
170
Tensile Strength: Ultimate (UTS), MPa 620
240
Tensile Strength: Yield (Proof), MPa 430
130

Thermal Properties

Latent Heat of Fusion, J/g 250
570
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
590
Melting Onset (Solidus), °C 1420
580
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 51
120
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
31
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
110

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 1.6
7.6
Embodied Energy, MJ/kg 22
140
Embodied Water, L/kg 48
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
7.1
Resilience: Unit (Modulus of Resilience), kJ/m3 480
120
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 22
25
Strength to Weight: Bending, points 21
33
Thermal Diffusivity, mm2/s 14
52
Thermal Shock Resistance, points 20
11

Alloy Composition

Aluminum (Al), % 0
82.9 to 89
Carbon (C), % 0 to 0.24
0
Copper (Cu), % 0 to 0.6
0 to 1.0
Iron (Fe), % 96.4 to 100
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.8
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.027
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.6
11 to 13
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0 to 0.15
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25