MakeItFrom.com
Menu (ESC)

EN 1.0590 Steel vs. SAE-AISI 1086 Steel

Both EN 1.0590 steel and SAE-AISI 1086 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0590 steel and the bottom bar is SAE-AISI 1086 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
220 to 260
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
11
Fatigue Strength, MPa 290
300 to 360
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Shear Strength, MPa 380
450 to 520
Tensile Strength: Ultimate (UTS), MPa 620
760 to 870
Tensile Strength: Yield (Proof), MPa 430
480 to 580

Thermal Properties

Latent Heat of Fusion, J/g 250
240
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
50
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
1.4
Embodied Energy, MJ/kg 22
19
Embodied Water, L/kg 48
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
79 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 480
610 to 890
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
27 to 31
Strength to Weight: Bending, points 21
24 to 26
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 20
26 to 30

Alloy Composition

Carbon (C), % 0 to 0.24
0.8 to 0.93
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 96.4 to 100
98.5 to 98.9
Manganese (Mn), % 0 to 1.8
0.3 to 0.5
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.027
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.040
0 to 0.050
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0 to 0.15
0