MakeItFrom.com
Menu (ESC)

EN 1.0590 Steel vs. S31266 Stainless Steel

Both EN 1.0590 steel and S31266 stainless steel are iron alloys. They have 42% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.0590 steel and the bottom bar is S31266 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 19
40
Fatigue Strength, MPa 290
400
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
81
Shear Strength, MPa 380
590
Tensile Strength: Ultimate (UTS), MPa 620
860
Tensile Strength: Yield (Proof), MPa 430
470

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 51
12
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
37
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.6
6.5
Embodied Energy, MJ/kg 22
89
Embodied Water, L/kg 48
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
290
Resilience: Unit (Modulus of Resilience), kJ/m3 480
540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
29
Strength to Weight: Bending, points 21
24
Thermal Diffusivity, mm2/s 14
3.1
Thermal Shock Resistance, points 20
18

Alloy Composition

Carbon (C), % 0 to 0.24
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 0 to 0.6
1.0 to 2.5
Iron (Fe), % 96.4 to 100
34.1 to 46
Manganese (Mn), % 0 to 1.8
2.0 to 4.0
Molybdenum (Mo), % 0
5.2 to 6.2
Nickel (Ni), % 0
21 to 24
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.027
0.35 to 0.6
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.020
Titanium (Ti), % 0 to 0.060
0
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0 to 0.15
0