MakeItFrom.com
Menu (ESC)

EN 1.0596 Steel vs. C63200 Bronze

EN 1.0596 steel belongs to the iron alloys classification, while C63200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0596 steel and the bottom bar is C63200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
17 to 18
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Shear Strength, MPa 330
390 to 440
Tensile Strength: Ultimate (UTS), MPa 530
640 to 710
Tensile Strength: Yield (Proof), MPa 330
310 to 350

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 400
230
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 50
35
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
29
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.4
3.4
Embodied Energy, MJ/kg 19
55
Embodied Water, L/kg 47
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
95 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 290
400 to 510
Stiffness to Weight: Axial, points 13
7.9
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 19
21 to 24
Strength to Weight: Bending, points 18
20 to 21
Thermal Diffusivity, mm2/s 14
9.6
Thermal Shock Resistance, points 17
22 to 24

Alloy Composition

Aluminum (Al), % 0
8.7 to 9.5
Carbon (C), % 0 to 0.24
0
Copper (Cu), % 0 to 0.6
78.8 to 82.6
Iron (Fe), % 96.8 to 100
3.5 to 4.3
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.7
1.2 to 2.0
Nickel (Ni), % 0
4.0 to 4.8
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.035
0
Residuals, % 0
0 to 0.5