MakeItFrom.com
Menu (ESC)

EN 1.0601 Steel vs. S39274 Stainless Steel

Both EN 1.0601 steel and S39274 stainless steel are iron alloys. They have 62% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0601 steel and the bottom bar is S39274 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
270
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 11
17
Fatigue Strength, MPa 220
380
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 72
81
Shear Strength, MPa 430
560
Tensile Strength: Ultimate (UTS), MPa 730
900
Tensile Strength: Yield (Proof), MPa 350
620

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1410
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 48
16
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.5
4.3
Embodied Energy, MJ/kg 19
60
Embodied Water, L/kg 47
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
140
Resilience: Unit (Modulus of Resilience), kJ/m3 330
940
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 26
32
Strength to Weight: Bending, points 23
26
Thermal Diffusivity, mm2/s 13
4.2
Thermal Shock Resistance, points 23
25

Alloy Composition

Carbon (C), % 0.57 to 0.65
0 to 0.030
Chromium (Cr), % 0 to 0.4
24 to 26
Copper (Cu), % 0
0.2 to 0.8
Iron (Fe), % 97.1 to 98.8
57 to 65.6
Manganese (Mn), % 0.6 to 0.9
0 to 1.0
Molybdenum (Mo), % 0 to 0.1
2.5 to 3.5
Nickel (Ni), % 0 to 0.4
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.8
Sulfur (S), % 0 to 0.045
0 to 0.020
Tungsten (W), % 0
1.5 to 2.5