MakeItFrom.com
Menu (ESC)

EN 1.0625 Steel vs. 8176 Aluminum

EN 1.0625 steel belongs to the iron alloys classification, while 8176 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.0625 steel and the bottom bar is 8176 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 25
15
Fatigue Strength, MPa 230
59
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Tensile Strength: Ultimate (UTS), MPa 560
160
Tensile Strength: Yield (Proof), MPa 320
95

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
660
Melting Onset (Solidus), °C 1420
650
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 47
230
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
61
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
200

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.5
8.2
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 48
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
21
Resilience: Unit (Modulus of Resilience), kJ/m3 270
66
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 20
16
Strength to Weight: Bending, points 19
24
Thermal Diffusivity, mm2/s 13
93
Thermal Shock Resistance, points 18
7.0

Alloy Composition

Aluminum (Al), % 0
98.6 to 99.6
Carbon (C), % 0.18 to 0.25
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
0
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 96.6 to 99.02
0.4 to 1.0
Manganese (Mn), % 0.8 to 1.4
0
Molybdenum (Mo), % 0 to 0.12
0
Nickel (Ni), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
0.030 to 0.15
Sulfur (S), % 0 to 0.020
0
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15