MakeItFrom.com
Menu (ESC)

EN 1.0625 Steel vs. EN 1.4378 Stainless Steel

Both EN 1.0625 steel and EN 1.4378 stainless steel are iron alloys. They have 67% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.0625 steel and the bottom bar is EN 1.4378 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
14 to 34
Fatigue Strength, MPa 230
340 to 550
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Tensile Strength: Ultimate (UTS), MPa 560
760 to 1130
Tensile Strength: Yield (Proof), MPa 320
430 to 970

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
910
Melting Completion (Liquidus), °C 1460
1390
Melting Onset (Solidus), °C 1420
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Expansion, µm/m-K 12
17

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
12
Density, g/cm3 7.8
7.6
Embodied Carbon, kg CO2/kg material 1.5
2.7
Embodied Energy, MJ/kg 20
39
Embodied Water, L/kg 48
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 270
470 to 2370
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
28 to 41
Strength to Weight: Bending, points 19
24 to 31
Thermal Shock Resistance, points 18
16 to 23

Alloy Composition

Carbon (C), % 0.18 to 0.25
0 to 0.080
Chromium (Cr), % 0 to 0.3
17 to 19
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.6 to 99.02
61.2 to 69
Manganese (Mn), % 0.8 to 1.4
11.5 to 14.5
Molybdenum (Mo), % 0 to 0.12
0
Nickel (Ni), % 0 to 0.4
2.3 to 3.7
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0 to 0.030
0 to 0.060
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Vanadium (V), % 0 to 0.030
0