MakeItFrom.com
Menu (ESC)

EN 1.0644 Steel vs. AWS E90C-D2

Both EN 1.0644 steel and AWS E90C-D2 are iron alloys. Their average alloy composition is basically identical. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.0644 steel and the bottom bar is AWS E90C-D2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
19
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 690
690
Tensile Strength: Yield (Proof), MPa 570
620

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 47
49
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
2.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.8
1.6
Embodied Energy, MJ/kg 24
21
Embodied Water, L/kg 50
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 870
1010
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 13
13
Thermal Shock Resistance, points 22
20

Alloy Composition

Aluminum (Al), % 0.010 to 0.050
0
Carbon (C), % 0.16 to 0.22
0 to 0.12
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
0 to 0.35
Iron (Fe), % 96.1 to 98.4
95.5 to 98.6
Manganese (Mn), % 1.3 to 1.7
1.0 to 1.9
Molybdenum (Mo), % 0 to 0.080
0.4 to 0.6
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0.1 to 0.5
0 to 0.9
Sulfur (S), % 0 to 0.035
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0.080 to 0.15
0 to 0.030
Residuals, % 0
0 to 0.5