MakeItFrom.com
Menu (ESC)

EN 1.0644 Steel vs. EN 1.5636 Steel

Both EN 1.0644 steel and EN 1.5636 steel are iron alloys. Both are furnished in the quenched and tempered condition. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0644 steel and the bottom bar is EN 1.5636 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
27
Fatigue Strength, MPa 380
230
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 690
560
Tensile Strength: Yield (Proof), MPa 570
310

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 47
52
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
3.6
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.8
1.7
Embodied Energy, MJ/kg 24
23
Embodied Water, L/kg 50
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 870
260
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
20
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 22
16

Alloy Composition

Aluminum (Al), % 0.010 to 0.050
0
Carbon (C), % 0.16 to 0.22
0.060 to 0.12
Chromium (Cr), % 0 to 0.3
0 to 0.3
Copper (Cu), % 0 to 0.3
0 to 0.3
Iron (Fe), % 96.1 to 98.4
94.6 to 97.4
Manganese (Mn), % 1.3 to 1.7
0.5 to 0.8
Molybdenum (Mo), % 0 to 0.080
0 to 0.2
Nickel (Ni), % 0 to 0.4
2.0 to 3.0
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 0.1 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.035
0 to 0.015
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0.080 to 0.15
0 to 0.050