MakeItFrom.com
Menu (ESC)

EN 1.0920 Steel vs. 319.0 Aluminum

EN 1.0920 steel belongs to the iron alloys classification, while 319.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.0920 steel and the bottom bar is 319.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
78 to 84
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 23
1.8 to 2.0
Fatigue Strength, MPa 270
76 to 80
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Shear Strength, MPa 340
170 to 210
Tensile Strength: Ultimate (UTS), MPa 540
190 to 240
Tensile Strength: Yield (Proof), MPa 380
110 to 180

Thermal Properties

Latent Heat of Fusion, J/g 250
480
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
600
Melting Onset (Solidus), °C 1420
540
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 50
110
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
27
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
84

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
10
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 1.6
7.7
Embodied Energy, MJ/kg 22
140
Embodied Water, L/kg 50
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
3.3 to 3.9
Resilience: Unit (Modulus of Resilience), kJ/m3 380
88 to 220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
48
Strength to Weight: Axial, points 19
18 to 24
Strength to Weight: Bending, points 19
25 to 30
Thermal Diffusivity, mm2/s 14
44
Thermal Shock Resistance, points 17
8.6 to 11

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
85.8 to 91.5
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.35
3.0 to 4.0
Iron (Fe), % 96.1 to 99.08
0 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0.9 to 1.7
0 to 0.5
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.5
0 to 0.35
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.5
5.5 to 6.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.030
0 to 0.25
Vanadium (V), % 0 to 0.12
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5