MakeItFrom.com
Menu (ESC)

EN 1.0920 Steel vs. 6008 Aluminum

EN 1.0920 steel belongs to the iron alloys classification, while 6008 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.0920 steel and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 23
9.1 to 17
Fatigue Strength, MPa 270
55 to 88
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 340
120 to 170
Tensile Strength: Ultimate (UTS), MPa 540
200 to 290
Tensile Strength: Yield (Proof), MPa 380
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
180
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
620
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 50
190
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
49
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
160

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.6
8.5
Embodied Energy, MJ/kg 22
160
Embodied Water, L/kg 50
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
24 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 380
76 to 360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 19
21 to 29
Strength to Weight: Bending, points 19
28 to 35
Thermal Diffusivity, mm2/s 14
77
Thermal Shock Resistance, points 17
9.0 to 13

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
96.5 to 99.1
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.3
0 to 0.3
Copper (Cu), % 0 to 0.35
0 to 0.3
Iron (Fe), % 96.1 to 99.08
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0.9 to 1.7
0 to 0.3
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.5
0.5 to 0.9
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.030
0 to 0.1
Vanadium (V), % 0 to 0.12
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15