MakeItFrom.com
Menu (ESC)

EN 1.0920 Steel vs. EN 1.6582 Steel

Both EN 1.0920 steel and EN 1.6582 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.0920 steel and the bottom bar is EN 1.6582 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
190 to 300
Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 540
620 to 1750

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
440
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
40
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
3.6
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
1.7
Embodied Energy, MJ/kg 22
22
Embodied Water, L/kg 50
56

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
22 to 62
Strength to Weight: Bending, points 19
21 to 41
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 17
18 to 51

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.2
0.3 to 0.38
Chromium (Cr), % 0 to 0.3
1.3 to 1.7
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 96.1 to 99.08
94.7 to 96.5
Manganese (Mn), % 0.9 to 1.7
0.5 to 0.8
Molybdenum (Mo), % 0 to 0.1
0.15 to 0.3
Nickel (Ni), % 0 to 0.5
1.3 to 1.7
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.035
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.12
0