MakeItFrom.com
Menu (ESC)

EN 1.1061 Steel vs. 7108A Aluminum

EN 1.1061 steel belongs to the iron alloys classification, while 7108A aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.1061 steel and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
26
Tensile Strength: Ultimate (UTS), MPa 530 to 1810
350

Thermal Properties

Latent Heat of Fusion, J/g 250
380
Maximum Temperature: Mechanical, °C 400
210
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1420
520
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 51
150
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
36
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
110

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
10
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 1.4
8.3
Embodied Energy, MJ/kg 19
150
Embodied Water, L/kg 46
1150

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 19 to 64
33 to 34
Strength to Weight: Bending, points 19 to 42
38
Thermal Diffusivity, mm2/s 14
59
Thermal Shock Resistance, points 17 to 58
15 to 16

Alloy Composition

Aluminum (Al), % 0
91.6 to 94.4
Carbon (C), % 0.42 to 0.5
0
Chromium (Cr), % 0
0 to 0.040
Copper (Cu), % 0 to 0.25
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 98.1 to 99.06
0 to 0.3
Magnesium (Mg), % 0
0.7 to 1.5
Manganese (Mn), % 0.5 to 0.8
0 to 0.050
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0 to 0.2
Sulfur (S), % 0.020 to 0.035
0
Titanium (Ti), % 0
0 to 0.030
Zinc (Zn), % 0
4.8 to 5.8
Zirconium (Zr), % 0
0.15 to 0.25
Residuals, % 0
0 to 0.15