MakeItFrom.com
Menu (ESC)

EN 1.1118 Cast Steel vs. Grade C-6 Titanium

EN 1.1118 cast steel belongs to the iron alloys classification, while grade C-6 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.1118 cast steel and the bottom bar is grade C-6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 14 to 21
9.0
Fatigue Strength, MPa 320 to 400
460
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
39
Tensile Strength: Ultimate (UTS), MPa 700 to 750
890
Tensile Strength: Yield (Proof), MPa 460 to 630
830

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
310
Melting Completion (Liquidus), °C 1460
1580
Melting Onset (Solidus), °C 1420
1530
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 51
7.8
Thermal Expansion, µm/m-K 12
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
30
Embodied Energy, MJ/kg 19
480
Embodied Water, L/kg 48
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97 to 130
78
Resilience: Unit (Modulus of Resilience), kJ/m3 550 to 1050
3300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 25 to 27
55
Strength to Weight: Bending, points 22 to 23
46
Thermal Diffusivity, mm2/s 14
3.2
Thermal Shock Resistance, points 22 to 24
63

Alloy Composition

Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0.2 to 0.25
0 to 0.1
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 97.3 to 98.3
0 to 0.5
Manganese (Mn), % 1.5 to 1.8
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.7 to 94
Residuals, % 0
0 to 0.4