MakeItFrom.com
Menu (ESC)

EN 1.1118 Cast Steel vs. C96300 Copper-nickel

EN 1.1118 cast steel belongs to the iron alloys classification, while C96300 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.1118 cast steel and the bottom bar is C96300 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
130
Elongation at Break, % 14 to 21
11
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
49
Tensile Strength: Ultimate (UTS), MPa 700 to 750
580
Tensile Strength: Yield (Proof), MPa 460 to 630
430

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 400
240
Melting Completion (Liquidus), °C 1460
1200
Melting Onset (Solidus), °C 1420
1150
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 51
37
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
6.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
42
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
5.1
Embodied Energy, MJ/kg 19
76
Embodied Water, L/kg 48
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97 to 130
59
Resilience: Unit (Modulus of Resilience), kJ/m3 550 to 1050
720
Stiffness to Weight: Axial, points 13
8.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 25 to 27
18
Strength to Weight: Bending, points 22 to 23
17
Thermal Diffusivity, mm2/s 14
10
Thermal Shock Resistance, points 22 to 24
20

Alloy Composition

Carbon (C), % 0.2 to 0.25
0 to 0.15
Copper (Cu), % 0
72.3 to 80.8
Iron (Fe), % 97.3 to 98.3
0.5 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 1.5 to 1.8
0.25 to 1.5
Nickel (Ni), % 0
18 to 22
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.020
Residuals, % 0
0 to 0.5