MakeItFrom.com
Menu (ESC)

EN 1.1122 Steel vs. AISI 444 Stainless Steel

Both EN 1.1122 steel and AISI 444 stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.1122 steel and the bottom bar is AISI 444 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 130
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 12 to 21
23
Fatigue Strength, MPa 170 to 260
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Shear Strength, MPa 240 to 290
300
Tensile Strength: Ultimate (UTS), MPa 340 to 460
470
Tensile Strength: Yield (Proof), MPa 240 to 370
310

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
930
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
23
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
15
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.4
3.4
Embodied Energy, MJ/kg 18
47
Embodied Water, L/kg 46
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 89
95
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 360
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 12 to 16
17
Strength to Weight: Bending, points 14 to 17
17
Thermal Diffusivity, mm2/s 14
6.2
Thermal Shock Resistance, points 11 to 15
16

Alloy Composition

Carbon (C), % 0.080 to 0.12
0 to 0.025
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 98.7 to 99.62
73.3 to 80.8
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8