MakeItFrom.com
Menu (ESC)

EN 1.1122 Steel vs. B443.0 Aluminum

EN 1.1122 steel belongs to the iron alloys classification, while B443.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.1122 steel and the bottom bar is B443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 130
43
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 12 to 21
4.9
Fatigue Strength, MPa 170 to 260
55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 240 to 290
110
Tensile Strength: Ultimate (UTS), MPa 340 to 460
150
Tensile Strength: Yield (Proof), MPa 240 to 370
50

Thermal Properties

Latent Heat of Fusion, J/g 250
470
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
620
Melting Onset (Solidus), °C 1420
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 51
150
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
38
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
130

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 1.4
8.0
Embodied Energy, MJ/kg 18
150
Embodied Water, L/kg 46
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 89
5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 360
18
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
52
Strength to Weight: Axial, points 12 to 16
15
Strength to Weight: Bending, points 14 to 17
23
Thermal Diffusivity, mm2/s 14
61
Thermal Shock Resistance, points 11 to 15
6.8

Alloy Composition

Aluminum (Al), % 0
91.9 to 95.5
Carbon (C), % 0.080 to 0.12
0
Copper (Cu), % 0 to 0.25
0 to 0.15
Iron (Fe), % 98.7 to 99.62
0 to 0.8
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.6
0 to 0.35
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
4.5 to 6.0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15