EN 1.1122 Steel vs. Low-oxygen Zirconium
EN 1.1122 steel belongs to the iron alloys classification, while low-oxygen zirconium belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.
For each property being compared, the top bar is EN 1.1122 steel and the bottom bar is low-oxygen zirconium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
98 |
Elongation at Break, % | 12 to 21 | |
23 |
Poisson's Ratio | 0.29 | |
0.34 |
Shear Modulus, GPa | 73 | |
37 |
Tensile Strength: Ultimate (UTS), MPa | 340 to 460 | |
330 |
Tensile Strength: Yield (Proof), MPa | 240 to 370 | |
270 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Specific Heat Capacity, J/kg-K | 470 | |
270 |
Thermal Conductivity, W/m-K | 51 | |
22 |
Thermal Expansion, µm/m-K | 12 | |
5.7 |
Otherwise Unclassified Properties
Density, g/cm3 | 7.9 | |
6.7 |
Embodied Water, L/kg | 46 | |
450 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 36 to 89 | |
70 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 160 to 360 | |
370 |
Stiffness to Weight: Axial, points | 13 | |
8.1 |
Stiffness to Weight: Bending, points | 24 | |
23 |
Strength to Weight: Axial, points | 12 to 16 | |
14 |
Strength to Weight: Bending, points | 14 to 17 | |
16 |
Thermal Diffusivity, mm2/s | 14 | |
12 |
Thermal Shock Resistance, points | 11 to 15 | |
42 |
Alloy Composition
Carbon (C), % | 0.080 to 0.12 | |
0 to 0.050 |
Chromium (Cr), % | 0 | |
0 to 0.2 |
Copper (Cu), % | 0 to 0.25 | |
0 |
Hafnium (Hf), % | 0 | |
0 to 4.5 |
Hydrogen (H), % | 0 | |
0 to 0.0050 |
Iron (Fe), % | 98.7 to 99.62 | |
0 to 0.2 |
Manganese (Mn), % | 0.3 to 0.6 | |
0 |
Nitrogen (N), % | 0 | |
0 to 0.025 |
Oxygen (O), % | 0 | |
0 to 0.1 |
Phosphorus (P), % | 0 to 0.025 | |
0 |
Silicon (Si), % | 0 to 0.3 | |
0 |
Sulfur (S), % | 0 to 0.025 | |
0 |
Zirconium (Zr), % | 0 | |
94.7 to 100 |