EN 1.1122 Steel vs. SAE-AISI 8645 Steel
Both EN 1.1122 steel and SAE-AISI 8645 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.
For each property being compared, the top bar is EN 1.1122 steel and the bottom bar is SAE-AISI 8645 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 100 to 130 | |
180 to 200 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 12 to 21 | |
12 to 23 |
Fatigue Strength, MPa | 170 to 260 | |
280 to 350 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
73 |
Shear Strength, MPa | 240 to 290 | |
380 to 400 |
Tensile Strength: Ultimate (UTS), MPa | 340 to 460 | |
600 to 670 |
Tensile Strength: Yield (Proof), MPa | 240 to 370 | |
390 to 560 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Maximum Temperature: Mechanical, °C | 400 | |
410 |
Melting Completion (Liquidus), °C | 1460 | |
1460 |
Melting Onset (Solidus), °C | 1420 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 51 | |
39 |
Thermal Expansion, µm/m-K | 12 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.0 | |
7.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.0 | |
8.4 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.8 | |
2.6 |
Density, g/cm3 | 7.9 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
1.5 |
Embodied Energy, MJ/kg | 18 | |
20 |
Embodied Water, L/kg | 46 | |
50 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 36 to 89 | |
77 to 120 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 160 to 360 | |
420 to 840 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 12 to 16 | |
21 to 24 |
Strength to Weight: Bending, points | 14 to 17 | |
20 to 22 |
Thermal Diffusivity, mm2/s | 14 | |
10 |
Thermal Shock Resistance, points | 11 to 15 | |
18 to 20 |
Alloy Composition
Carbon (C), % | 0.080 to 0.12 | |
0.43 to 0.48 |
Chromium (Cr), % | 0 | |
0.4 to 0.6 |
Copper (Cu), % | 0 to 0.25 | |
0 |
Iron (Fe), % | 98.7 to 99.62 | |
96.5 to 97.7 |
Manganese (Mn), % | 0.3 to 0.6 | |
0.75 to 1.0 |
Molybdenum (Mo), % | 0 | |
0.15 to 0.25 |
Nickel (Ni), % | 0 | |
0.4 to 0.7 |
Phosphorus (P), % | 0 to 0.025 | |
0 to 0.035 |
Silicon (Si), % | 0 to 0.3 | |
0.15 to 0.35 |
Sulfur (S), % | 0 to 0.025 | |
0 to 0.040 |