MakeItFrom.com
Menu (ESC)

EN 1.1122 Steel vs. C70700 Copper-nickel

EN 1.1122 steel belongs to the iron alloys classification, while C70700 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.1122 steel and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 130
73
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 12 to 21
39
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
46
Shear Strength, MPa 240 to 290
220
Tensile Strength: Ultimate (UTS), MPa 340 to 460
320
Tensile Strength: Yield (Proof), MPa 240 to 370
110

Thermal Properties

Latent Heat of Fusion, J/g 250
220
Maximum Temperature: Mechanical, °C 400
220
Melting Completion (Liquidus), °C 1460
1120
Melting Onset (Solidus), °C 1420
1060
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 51
59
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
12

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
34
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.4
3.4
Embodied Energy, MJ/kg 18
52
Embodied Water, L/kg 46
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 89
100
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 360
51
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 12 to 16
10
Strength to Weight: Bending, points 14 to 17
12
Thermal Diffusivity, mm2/s 14
17
Thermal Shock Resistance, points 11 to 15
12

Alloy Composition

Carbon (C), % 0.080 to 0.12
0
Copper (Cu), % 0 to 0.25
88.5 to 90.5
Iron (Fe), % 98.7 to 99.62
0 to 0.050
Manganese (Mn), % 0.3 to 0.6
0 to 0.5
Nickel (Ni), % 0
9.5 to 10.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.025
0
Residuals, % 0
0 to 0.5