MakeItFrom.com
Menu (ESC)

EN 1.1122 Steel vs. C72150 Copper-nickel

EN 1.1122 steel belongs to the iron alloys classification, while C72150 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.1122 steel and the bottom bar is C72150 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 130
99
Elastic (Young's, Tensile) Modulus, GPa 190
150
Elongation at Break, % 12 to 21
29
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
55
Shear Strength, MPa 240 to 290
320
Tensile Strength: Ultimate (UTS), MPa 340 to 460
490
Tensile Strength: Yield (Proof), MPa 240 to 370
210

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
600
Melting Completion (Liquidus), °C 1460
1210
Melting Onset (Solidus), °C 1420
1250
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 51
22
Thermal Expansion, µm/m-K 12
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
3.6

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
45
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.4
6.1
Embodied Energy, MJ/kg 18
88
Embodied Water, L/kg 46
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 89
120
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 360
150
Stiffness to Weight: Axial, points 13
9.1
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 12 to 16
15
Strength to Weight: Bending, points 14 to 17
15
Thermal Diffusivity, mm2/s 14
6.0
Thermal Shock Resistance, points 11 to 15
18

Alloy Composition

Carbon (C), % 0.080 to 0.12
0 to 0.1
Copper (Cu), % 0 to 0.25
52.5 to 57
Iron (Fe), % 98.7 to 99.62
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.6
0 to 0.050
Nickel (Ni), % 0
43 to 46
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5