MakeItFrom.com
Menu (ESC)

EN 1.1127 Steel vs. ASTM Grade LCB Steel

Both EN 1.1127 steel and ASTM grade LCB steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.1127 steel and the bottom bar is ASTM grade LCB steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 14 to 25
27
Fatigue Strength, MPa 280 to 370
200
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Tensile Strength: Ultimate (UTS), MPa 660 to 790
540
Tensile Strength: Yield (Proof), MPa 410 to 580
270

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
51
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.4
Embodied Energy, MJ/kg 19
18
Embodied Water, L/kg 49
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 140
120
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 880
200
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23 to 28
19
Strength to Weight: Bending, points 22 to 24
19
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 21 to 25
17

Alloy Composition

Carbon (C), % 0.34 to 0.42
0 to 0.3
Chromium (Cr), % 0 to 0.4
0
Iron (Fe), % 96.6 to 98.1
97 to 100
Manganese (Mn), % 1.4 to 1.7
0 to 1.0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0.15 to 0.35
0 to 0.6
Sulfur (S), % 0 to 0.035
0 to 0.045
Residuals, % 0
0 to 1.0