MakeItFrom.com
Menu (ESC)

EN 1.1127 Steel vs. EN AC-21100 Aluminum

EN 1.1127 steel belongs to the iron alloys classification, while EN AC-21100 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.1127 steel and the bottom bar is EN AC-21100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 230
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 14 to 25
6.2 to 7.3
Fatigue Strength, MPa 280 to 370
79 to 87
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 660 to 790
340 to 350
Tensile Strength: Yield (Proof), MPa 410 to 580
210 to 240

Thermal Properties

Latent Heat of Fusion, J/g 250
390
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
670
Melting Onset (Solidus), °C 1410
550
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 49
130
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
34
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
100

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 1.5
8.0
Embodied Energy, MJ/kg 19
150
Embodied Water, L/kg 49
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 140
19 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 880
300 to 400
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 23 to 28
31 to 33
Strength to Weight: Bending, points 22 to 24
36 to 37
Thermal Diffusivity, mm2/s 13
48
Thermal Shock Resistance, points 21 to 25
15

Alloy Composition

Aluminum (Al), % 0
93.4 to 95.7
Carbon (C), % 0.34 to 0.42
0
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0
4.2 to 5.2
Iron (Fe), % 96.6 to 98.1
0 to 0.19
Manganese (Mn), % 1.4 to 1.7
0 to 0.55
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0 to 0.18
Sulfur (S), % 0 to 0.035
0
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1