MakeItFrom.com
Menu (ESC)

EN 1.1127 Steel vs. C69400 Brass

EN 1.1127 steel belongs to the iron alloys classification, while C69400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.1127 steel and the bottom bar is C69400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 14 to 25
17
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Shear Strength, MPa 420 to 480
350
Tensile Strength: Ultimate (UTS), MPa 660 to 790
570
Tensile Strength: Yield (Proof), MPa 410 to 580
270

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
920
Melting Onset (Solidus), °C 1410
820
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 49
26
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
6.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
27
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.5
2.7
Embodied Energy, MJ/kg 19
44
Embodied Water, L/kg 49
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 140
80
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 880
340
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 23 to 28
19
Strength to Weight: Bending, points 22 to 24
18
Thermal Diffusivity, mm2/s 13
7.7
Thermal Shock Resistance, points 21 to 25
20

Alloy Composition

Carbon (C), % 0.34 to 0.42
0
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0
80 to 83
Iron (Fe), % 96.6 to 98.1
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 1.4 to 1.7
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
3.5 to 4.5
Sulfur (S), % 0 to 0.035
0
Zinc (Zn), % 0
11.5 to 16.5
Residuals, % 0
0 to 0.5