MakeItFrom.com
Menu (ESC)

EN 1.1127 Steel vs. C84100 Brass

EN 1.1127 steel belongs to the iron alloys classification, while C84100 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.1127 steel and the bottom bar is C84100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 230
65
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 14 to 25
13
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
39
Tensile Strength: Ultimate (UTS), MPa 660 to 790
230
Tensile Strength: Yield (Proof), MPa 410 to 580
81

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1410
810
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 49
110
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
23
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
25

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
29
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.5
2.9
Embodied Energy, MJ/kg 19
48
Embodied Water, L/kg 49
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 140
24
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 880
30
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 23 to 28
7.4
Strength to Weight: Bending, points 22 to 24
9.7
Thermal Diffusivity, mm2/s 13
33
Thermal Shock Resistance, points 21 to 25
7.8

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Bismuth (Bi), % 0
0 to 0.090
Carbon (C), % 0.34 to 0.42
0
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0
78 to 85
Iron (Fe), % 96.6 to 98.1
0 to 0.3
Lead (Pb), % 0
0.050 to 0.25
Manganese (Mn), % 1.4 to 1.7
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0 to 0.5
Phosphorus (P), % 0 to 0.035
0 to 0.050
Silicon (Si), % 0.15 to 0.35
0 to 0.010
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
1.5 to 4.5
Zinc (Zn), % 0
12 to 20
Residuals, % 0
0 to 0.5